An Unusual Example of H₂ Coordination by a d⁴ Metal Center: Reactions between OsH₂Cl₂(P-*i*-Pr₃)₂ and H₂

Dmitry G. Gusev,^{*,†} Vladimir F. Kuznetsov, Igor L. Eremenko, and Heinz Berke*

> Anorganisch-chemisches Institut der Universität Zürich Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Received April 1, 1993

Addition of hydrogen to 16-e complexes of transition metals often leads to formation of 18-e classical and nonclassical hydrides.¹ Several recent studies have focused on reactions between H₂ and 16-e complexes containing both H and Cl ligands² where dehydrohalogenation makes possible more profound transformations to produce polyhydrides.^{2d-f} Unusual³ reversible coordination of H₂ to a d⁴ osmium complex $(O_{s}H_{2}Cl_{2}(P-i-Pr_{3})_{2})$ is reported in this communication. The adduct formed, nonclassical OsH₄Cl₂(P-*i*-Pr₃)₂, readily eliminates HCl upon further reaction with H_2 to form a new d⁴ dihydrogen complex (Os(H₂)(H)₃Cl(P-*i*-Pr₃)₂) or, under basic conditions, OsH₆(P $i-Pr_{3}_{2}$ and $[OsH_{5}(P-i-Pr_{3})_{2}]^{-}$.

The ¹H and ³¹P{¹H} NMR spectra of $OsH_2Cl_2(P-i-Pr_3)_2$ (1)⁴ in CD₂Cl₂ under 1 atm of H₂ show well-resolved resonances of 1⁵ together with an additional set of resonances⁶ due to the new complex 2 in the ratio [2]:[1] = 1:2. In the hydride-coupled ³¹P NMR spectrum of the mixture, a triplet and quintet are observed for 1 and 2, respectively. These observations demonstrate that 16-e OsH₂Cl₂(P-*i*-Pr₃)₂ reversibly binds H₂ to produce OsH₄- $Cl_2(P-i-Pr_3)_2(2)^7$ (eq 1). The ratio [2]: [1] increases on decreasing

$$OsH_2Cl_2(P-i-Pr_3)_2 + H_2 \rightleftharpoons OsH_4Cl_2(P-i-Pr_3)_2 \quad (1)$$
1
2

the temperature, but equilibrium 1 is rather slow⁸ and makes measurement of the equilibrium constants difficult.

Complex 2 was isolated,⁹ and its molecular structure was determined by a single-crystal X-ray diffraction study at -40

[†] Present address: Department of Chemistry, Indiana University, Bloomington, IN 47405.

(1) Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155.

(2) (a) Esteruelas, M. A.; Sola, E.; Oro, L. A.; Meyer, U.; Werner, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 1563. (b) Andriollo, A.; Esteruelas, M. A.; Meyer, U.; Oro, L. A.; Sanchez-Delgado, K. A.; Sola, E.; Valero, S.; Werner, H. J. Am. Chem. Soc. 1989, 111, 7431. (c) Gusev, D. G.; Bakhmutov, V. I.; Grushin, V. V.; Vol'pin, M. E. Inorg. Chim. Acta 1990, 175, 19. (d) Gusev, D. G.; Bakhmutov, V. I.; Grushin, V. V.; Vol'pin, M. E. Inorg. Chim. Acta 1990, 177, 115. (e) Grushin, V. V.; Vymenits, A. B.; Vol'pin, M. E. J. Organomet. Chem. 1990, 382, 185. (f) Gusev, D. G.; Vymenits, A. B.; Bakhmutov, V. I. Inorg. Chem. 1992, 31, 1. (g) Mediati, M.; Tachibana, G. N: Jensen, C. M. Inorg. Chem. 1992, 31, 1827. (3) The other known d⁴ dihydrogen complexes, $CpM(H_2)(CO)_3$ (M = V

Nb) and $[Re(H_2)(H)_2(CO)(PMe_2Ph)_3]^+$, were prepared by UV photolysis of CpM(CO)₄ in liquid xenon under H_2^{3a} and protonation of $Re(H)_3$ -(CO)(PMe2Ph)3,^{3b} respectively. (a) Howard, M. T.; George, M. W.; Hamley, P.; Poliakoff, M. J. Chem. Soc., Chem. Commun. **1991**, 1101. (b) Luo, X.-L.; Crabtree, R. H. J. Am. Chem. Soc. 1990, 112, 6912.

(4) (a) The dihydride $OsH_2Cl_2(P-i-Pr_3)_2$ was prepared according to the

(*) (a) 1 ne anyariae $OSH_2Cl_2(P-i-Pr_3)_2$ was prepared according to the reported procedure.⁴⁰ (b) Aracama, M.; Esteruelas, M. A.; Lahoz, F. J.; Lopez, J. A.; Meyer, U.; Oro, L. A.; Werner, H. *Inorg. Chem.* 1991, *30*, 288. (5) ¹H NMR (CD_2Cl_2, 20 °C): $\delta - 16.16$ (t, 2J (H-P) = 35 Hz, 2H, OsH₂), 1.32 (dd, ³J(H-H) = 7.2 Hz, ³J(H-P) = 14.5 Hz, 36H, CH₃), 2.31 (m, 6H, CH). ³¹P{¹H} (CD_2Cl_2, 20 °C): $\delta + 5.3$. (6) ¹H NMR (CD_2Cl_2, 20 °C): $\delta - 10.55$ (t, ²J(H-P) = 10.1 Hz, 4H, OsH₄), 1.25 (app q, J = 6.7 Hz, 36H, CH₃), 2.76 (m, 6H, CH). ³¹P{¹H} NMR (CD₂Cl₂, 20 °C): $\delta + 3.5$. (7) A mixture of 1-d, and 2-d, formed in a CD. CL solution of 1 which

(7) A mixture of $1-d_2$ and $2-d_4$ formed in a CD₂Cl₂ solution of 1 sealed under an atmosphere of D_2 . Residual (ca. 2% H) resonances of OsHDCl₂(P-i-Pr₃)₂ and OsHD₃Cl₂(P-i-Pr₃)₂ were detectable in the ¹H NMR spectra.

Figure 1. ORTEP projection of the nonhydrogen atoms of OsH₄Cl₂(Pi-Pr₃)₂. Selected bond lengths (Å): Os-Cl(1) = 2.445(3), Os-Cl(2) = 2.441(3), Os-P(1) = 2.415(2), Os-P(2) = 2.411(2). Selected bond angles (deg): Cl(1)-Os-Cl(2) = 88.7(1), Cl(1)-Os-P(1) = 87.2(1), Cl(1)-Os-P(2) = 92.0(1), Cl(2)-Os-P(1) = 90.2(1), Cl(2)-Os-P(2) = 86.8(1),P(1)-Os-P(2) = 176.9(1).

°C.¹⁰ The structure of 2 (Figure 1) dramatically differs from that of the parent dihydride characterized as a distorted square antiprism with two vacant coordination sites where the P_1 -Os- P_2 angle is 112.15(3)°.4b The apparent arrangement of the Cl and P atoms in 2 seems to be a part of an octahedron. The Os-P distances are practically equal (2.415(2) and 2.411(2) Å) and similar to the 2.43-Å sum of Pauling's covalent radii¹¹ of the atoms but longer than the Os-P distances in OsH₆(P-*i*-Pr₂Ph)₂ (2.338(2) and 2.347(2) Å).¹² The Os-Cl distances in 2 (2.445(3) and 2.441(3) Å) are appreciably, ca. 0.12 and 0.07 Å, longer than the Os-Cl distances in OsCl₄(PMePh₂)₂¹³ and OsH₂Cl₂(P $i-\Pr_3$ ₂,^{4b} respectively.

An independent X-ray analysis attempted at -80 °C gave the same positions of the $OsCl_2(P-i-Pr_3)_2$ framework. By the results of the two experiments, hydride ligands could not be reliably located.

In solution, the detailed structure of 2 also remains unclear because of fast intramolecular exchange between the metal-bound protons. The $T_{1\min}$ value of 39 ms (300 MHz) measured for the averaged OsH₄ resonance of 2^{14} and the observation of an AM₂X₃ $(M = {}^{31}P, X = {}^{2}H; {}^{2}J(H-P) = 10.2 Hz, J(H-D) = 4.4 Hz)$ pattern in the hydride region of the ¹H NMR spectrum of $2-d_3^7$ are evidence for bonding interactions between H-ligands in 2.

Complex 2 can be formulated as $Os(H_2)_2Cl_2(P-i-Pr_3)_2$ (2a) or $Os(H_2)(H)_2Cl_2(P-i-Pr_3)_2$ (2b). Using the experimental $T_{1\min}$ and J(H-D) values, these being exchange-averaged data, the expected r(H-H) and ${}^{1}J(H-D)$ for structures 2a and 2b can be calculated:¹⁵ for 2a, r(H-H) = 1.06 Å (assuming fast intramolecular spinning of the dihydrogen ligands) or 1.33 Å (slow spinning), ${}^{1}J(H-D) = 13.2 \text{ Hz}$; for 2b, r(H-H) = 0.95 Å (fast spinning) or 1.20 Å (slow spinning), ${}^{1}J(H-D) = 26.4$ Hz. Thus, both structures seem to be plausible.

© 1993 American Chemical Society

⁽⁸⁾ More than 10 h was necessary to reestablish the equilibrium at -25 °C. (9) A 5-mm NMR tube containing a suspension of OsH₂Cl₂(P-*i*-Pr₃)₂ (50 mg) in 0.5 mL of $CF_2Cl_2:CD_2Cl_2$ (4:1) sealed under ca. 1 atm of H_2 was allowed to stand at -25 °C for 48 h. Formation of colorless crystals of 2 accompanied by disappearance of the red-brown 1 was observed, and finally the crystals were isolated under nitrogen. In the solid state, 2 is moderately stable under N₂.

⁽¹⁰⁾ Crystallographic data: space group P21, Z = 2; a = 8.735(4) Å, b = 15.029(5) Å, c = 9.685(4) Å, $\beta = 105.71(3)^\circ$, V = 1223.9(9) Å³, $\rho_{cald} = 1.592$ g/cm³, $\mu = 56.66$ cm⁻¹; Siemens R 5 m/v diffractometer, Mo K α radiation

^{= 0.710 73} Å); 3080 independent reflections with $5^{\circ} < 2\theta < 58^{\circ}$ collected, 3017 reflections used in refinement with $I > 4\sigma(I)$; R = 0.029, R_w

⁽¹¹⁾ Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960.

⁽¹²⁾ Howard, J. A. K.; Johnson, O.; Koetzle, T. F.; Spencer, J. L. Inorg. (12) Howard, J. A. K., Sonnson, C., Rocczie, T. T., Spencer, J. L. Hovg. (13) Aslanov, L.; Mason, R.; Wheeler, A. G.; Whimp, P. O. J. Chem. Soc.

D 1970, 30.

⁽¹⁴⁾ For OsH₂Cl₂(P-*i*-Pr₃)₂, T_{1min} (OsH₂) = 200 ms (300 MHz). (15) For details, see ref 1 and (a) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 3027. (b) Earl, K. A.; Jia, C.; Maltby, P. A.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 3027.

Figure 2. Variable-temperature ¹H NMR spectra of OsH₄Cl₂(P-*i*-Pr₃)₂ (2) and $Os(H_2)(H)_3(P-i-Pr_3)_2$ (3) in a mixture $CF_2Cl_2:CD_2Cl_2$ (3:1). Below -100 °C, the resonances between δ -8 and -10 decrease because of precipitation of 2.

On the basis of recent theoretical and experimental data,¹⁶ one would probably consider the d^6 octahedral structure 2a to be preferable. Our low-temperature experiments with solutions of 2 in mixtures of CF_2Cl_2 and CD_2Cl_2 revealed decoalescence of the averaged OsH₄ resonance into two (1:2) broad lines (δ -9.0, -11.4) below -105 °C.17 The ratio indicates that 2 probably exists in solution as a mixture of isomers and that intramolecular fluxionality within each isomer has not yet been halted.

Besides formation of 2, the appearance and slow increase of amounts of the new hydride complex 3 was detected by ¹H and ³¹P NMR¹⁸ in the solutions of 1 in CF₂Cl₂:CD₂Cl₂ under H₂. The molar percentage of 3 of 10% was achieved 2 days after preparation but remained unchanged during subsequent observation. In the ¹H NMR spectra, the line width of the hydride resonance of 3 $(\delta - 7.54)$ is the smallest (50-60 Hz) between -20 and -30 °C. The resonance broadens on raising the temperature because of exchange with dissolved H₂ (δ 4.5). This was clearly revealed by a saturation-transfer experiment at -10 °C. At temperatures below -50 °C, broadening becomes significant again (Figure 2), and below -90 °C three new resonances are observed for 3 at δ -1.91 (br s), -3.81 (t, ${}^{2}J$ (H–P) = 16 Hz), and -15.0 (apparent doublet with splitting of 42 Hz or two closely separated resonances) in the ratio 2:1:2, respectively.¹⁹ T_1 times are very short (20 ms) for all hydride signals at -100 °C. On further cooling to -120

(16) Lin, Z.; Hall, M. B. Inorg. Chem. 1992, 31, 4262 and references therein.

therein. (17) The ³¹P{¹H} NMR spectrum of the solution shows broadened but single resonance at -120 °C. (18) ¹H NMR (CF₂Cl₂:CD₂Cl₂ (3:1), 20 °C): δ -7.54 (br s, 5H, OsH₃), 1.38 (app q, J = 8 Hz, 36H, CH₃), 2.37 (m, 6H, CH). ³¹P{¹H} NMR (CF₂Cl₂: CD = 0.01 + 2.00 +

 CD_2Cl_2 (3:1), 20 °C): δ 38.7. (19) Note that the exchange-averaged δ (OsH₅) value, -7.54 ppm, is in agreement with the result of averaging of the slow-exchange data: $(-1.91 \times 0.4) + (-3.81 \times 0.2) + (-15.0 \times 0.4) = -7.53$ ppm.

°C, T_1 shortens for the broad line at δ -1.91 (10.6 ms) but becomes longer for the others (91 and 60 ms) because of slowing of the exchange on the T_1 time scale.

The amount of 3 formed in the CF₂Cl₂:CD₂Cl₂ mixtures was substantially higher than in neat CD₂Cl₂, probably because of higher solubility of H₂ in fluorinated solvents. However, a mixture containing 10% of 3 was prepared in CD₂Cl₂ in the presence of solid KOH by stirring the solution at 24 °C for 45 min. Thus, formation of 3 seems to be an equilibrium process of HCl/H_2 substitution in 2(eq 2), similar to that known for related iridium

$$OsH_4Cl_2(P-i-Pr_3)_2 + H_2 \rightleftharpoons OsH_5Cl(P-i-Pr_3)_2 + HCl (2)$$
2
3

complexes $IrHCl_2(PR_3)_2$ (R = *i*-Pr, Cy) where $Ir(H_2)(H)_2$ -Cl(PR₃)₂ forms in solution under H₂.^{2d}

3 can be formulated as a dihydrogen complex (Os(H2)(H)3Cl(P $i-\Pr_{3}(\delta(H_2) - 1.91)$ on the basis of the spectroscopic data and the exchange with H_2 in solution. The latter process probably goes via formation of a 16-e complex $(OsH_3Cl(P-i-Pr_3)_2)$. Related ruthenium complex, RuH₃Cl(PCy₃)₂, has been recently prepared.20

At 20 °C under 1 atm of H₂ and strong basic conditions (18crown-6, KOH, THF-d₈), dihydride 1 undergoes fast (ca. 15 min) and complete dehydrohalogenation with clean formation of $known^{4b,12}$ OsH₆(P-*i*-Pr₃)₂ (4).²¹ Subsequent slow (>10 h) deprotonation of 4 occurs in the reaction mixture to give anionic $[O_{5}H_{5}(P-i-Pr_{3})_{2}]^{-}$ (5)²² as the sole product of the reaction.

The data presented in this work for the osmium polyhydrides and those available in the literature for the analogous iridium complexes IrH_5P_2 ,²³ $Ir(H_2)(H)_2ClP_2$,^{2g} and $Ir(H_2)HCl_2P_2$ ^{2d} show a clear trend for the polyhydride complexes to avoid the highest possible oxidation states by adopting nonclassical structures in the presence of strongly electronegative Cl ligands.

Acknowledgment. The support of this research by the Swiss National Science Foundation is gratefully acknowledged.

Supplementary Material Available: Tables of positional and thermal parameters and bond distances and angles (5 pages). Ordering information is given on any masthead page.

(20) Chaudret, B.; Chung, G.; Eisenstein, O.; Jackson, S. A.; Lahoz, F. J.; Lopez, J. A. J. Am. Chem. Soc. 1991, 113, 2314.

Lopez, J. A. J. Am. Chem. Soc. 1991, 113, 2314. (21) Our ¹H and ³¹P{¹H} NMR data are in agreement with those published for 4 previously.⁴ $T_{1min}(OsH_6) = 120 ms$ (300 MHz). (22) ¹H NMR (THF-d₈, 20 °C): $\delta - 12.41$ (t, ²J(H-P) = 14.8 Hz, 5H, OsH₅), 1.09 (app q, J = 7 Hz, 36H, CH₃), 1.51 (m, 6H, CH). $T_{1min}(OsH_5)$ = 500 ms (300 MHz). ³¹P{¹H} NMR (THF-d₈, 20 °C): δ 65.7 (sextet in the ¹H MAR (THF-d₈ and ¹H) NMR (THF-d₈, 20 °C): δ 65.7 (sextet in the hydride-coupled ³¹P NMR spectra).

(23) Garlaschelli, L.; Khan, S. I.; Bau, R. J. Am. Chem. Soc. 1985, 107, 7212